Gabriel1

Dr. Gabriel Abarca Anjarí

gabriel.abarca@ubo.cl


ORCID logo https://orcid.org/0000-0001-8477-2275

El Dr. Abarca recibió su grado de Licenciado en Química de la Universidad de Santiago de Chile en el año 2008 y obtuvo el título de Químico en la misma casa de estudios (2009). En el año 2014 recibió su grado de Doctor en Química en la Universidad de Chile. Posteriormente ha realizado estadías de investigación en la Universidad de Rennes 1, Rennes, Francia (2010) y la Universidad Federal de Rio Grande do Sul, Porto Alegre, Brasil (2011). Finalmente, realizó estudios postdoctorales en la Universidad Federal de Rio Grande do Sul, Porto Alegre, Brasil (2014-2017).


Líneas de Investigación


Líquidos iónicos.

Nuestra línea de investigación está enfocada en el diseño y síntesis de nuevos materiales nanoestructurados, utilizando conceptos de Química Verde, aplicadas en reacciones catalíticas (homogéneas y heterogéneas) con interés en química fina, energía y medicina.


Proyectos


    1. Postdoctorado en Universidade Federal do Rio Grande do Sul: Ionic liquids for capture, transport and storage of CO2 (2014 – 2016)

    2. Postdoctorado en Universidade Federal do Rio Grande do Sul: Nucleus of excellence in catalysis and ionic liquids for the development of sustainable chemical processes (2016 – 2018)

    3. Proyecto Anillo ACT192175: Rational design of molecular catalytic materials for energy conversion and electrochemical reactions (2019 – 2021)

    4. Fondecyt de Iniciación 11170879: Nanocatalysis: Sustainable Technology for Organic Transformations (2017 – 2020)

    5. FONDEF IDeA ID19I10113: Formulación de un material de silicona con nanopartículas de cobre pegiladas con actividad antibiopelícula y uso potencial en la fabricación de catéteres (2019 – 2021)


Publicaciones


    1. Moya, S. A.; Vidal, M.; Abarca, G.; Martinez, C.; Guerchais, V.; Le Bozec, H.; Garland, M. T.; Rodriguez, S.; Aguirre, P. Synthesis, Structure and Catalytic Activities for Hydrogen Transfer Reaction of the Carbonyl Ruthenium(II) Complex Containing Polypyridine and Phosphine Ligands. Inorg. Chem. Commun. 2010, 13 (12), 1519–1521. [link]

    2. Moya, S. A.; Vidal, M.; Brown, K.; Negrete-Vergara, C.; Abarca, G.; Aguirre, P. Ruthenium Carbonyl Compounds Containing Polypyridine Ligands as Catalysts in the Reaction of N-Benzylideneaniline Hydrogenation. Inorg. Chem. Commun. 2012, 22, 146–148. [link]

    3. Zolezzi, S.; Moya, S. A.; Valdebenito, G.; Abarca, G.; Parada, J.; Aguirre, P. Methoxycarbonylation of Olefins Catalyzed by Palladium(II) Complexes Containing Naphthyl(Diphenyl)Phosphine Ligands. Appl. Organomet. Chem. 2014, 28 (5), 364–371. [link]

    4. Abarca, G.; Brown, K.; Moya, S. A.; Bayón, J. C.; Aguirre, P. A. Methoxycarbonylation of Styrene Using a New Type of Palladium Complexes Bearing P,N-Donor Ligands as Catalysts. Catal. Letters 2015, 145 (7), 1396–1402. https://doi.org/10.1007/s10562-015-1502-y

    5. Ali, M.; Abarca, G.; Eberhardt, D.; Gual, A.; Bernardi, F.; Teixeira, S. R.; Dupont, J. “Save Money” during Hydrogenation Reactions by Exploiting the Superior Performance of Pd-NPs Deposited on Carbon Black by Magnetron Sputtering. Tetrahedron 2017, 73 (38), 5593–5598. [link]

    6. Montolio, S.; Abarca, G.; Porcar, R.; Dupont, J.; Burguete, M. I.; García-Verdugo, E.; Luis, S. V. Hierarchically Structured Polymeric Ionic Liquids and Polyvinylpyrrolidone Mat-Fibers Fabricated by Electrospinning. J. Mater. Chem. A 2017, 5 (20), 9733–9744. [link]

    7. Galdino, N. M.; Brehm, G. S.; Bussamara, R.; Gonçalves, W. D. G.; Abarca, G.; Scholten, J. D. Sputtering Deposition of Gold Nanoparticles onto Graphene Oxide Functionalized with Ionic Liquids: Biosensor Materials for Cholesterol Detection. J. Mater. Chem. B 2017, 5 (48), 9482–9486. [link]

    8. Weilhard, A.; Abarca, G.; Viscardi, J.; Prechtl, M. H. G.; Scholten, J. D.; Bernardi, F.; Baptista, D. L.; Dupont, J. Challenging Thermodynamics: Hydrogenation of Benzene to 1,3-Cyclohexadiene by Ru@Pt Nanoparticles. ChemCatChem 2017, 9 (1), 204–211. [link]

    9. Simon, N. M.; Abarca, G.; Scholten, J. D.; Domingos, J. B.; Mecerreyes, D.; Dupont, J. Structural, Electronic and Catalytic Properties of Palladium Nanoparticles Supported on Poly(Ionic Liquid). Appl. Catal. A Gen. 2018, 562, 79–86. [link]

    10. da Silva, K. I.; Bernardi, F.; Abarca, G.; Baptista, D. L.; Leite Santos, M. J.; Fernández Barquín, L.; Dupont, J.; de Pedro, I. Tuning the Structure and Magnetic Behavior of Ni–Ir-Based Nanoparticles in Ionic Liquids. Phys. Chem. Chem. Phys. 2018, 20 (15), 10247–10257. [link]

    11. Bolzan, G. R.; Abarca, G.; Gonçalves, W. D. G.; Matos, C. F.; Santos, M. J. L.; Dupont, J. Imprinted Naked Pt Nanoparticles on N-Doped Carbon Supports: A Synergistic Effect between Catalyst and Support. Chem. – A Eur. J. 2018, 24 (6), 1365–1372. [link]

    12. Pizarro, A.;Abarca, G.; Gutiérrez-Cerón, C.; Cortés-Arriagada, D.; Bernardi, F.; Berrios, C.; Silva, J. F.; Rezende, M. C.; Zagal, J. H.; Oñate, R.; Ponce, I. Building Pyridinium Molecular Wires as Axial Ligands for Tuning the Electrocatalytic Activity of Iron Phthalocyanines for the Oxygen Reduction Reaction. ACS Catal. 2018, 8 (9), 8406–8419. [link]

    13. Ríos, P. L.; Povea, P.; Cerda-Cavieres, C.; Arroyo, J. L.; Morales-Verdejo, C.; Abarca, G.; Camarada, M. B. Novel in Situ Synthesis of Copper Nanoparticles Supported on Reduced Graphene Oxide and Its Application as a New Catalyst for the Decomposition of Composite Solid Propellants. RSC Adv. 2019, 9 (15), 8480–8489. [link]

    14. Abarca, G.; Viera, M.; Aliaga, C.; Marco, J. F.; Orellana, W.; Zagal, J. H.; Tasca, F. In Search of the Most Active MN4 Catalyst for the Oxygen Reduction Reaction. The Case of Perfluorinated Fe Phthalocyanine. J. Mater. Chem. A 2019, 7 (43), 24776–24783. [link]

    15. Zamora, R. A.; Gutiérrez-Cerón, C.; Fernandes, J. A.; Abarca, G. Advanced Surface Characterization Techniques in Nano- and Biomaterials. In Nanoengineering Materials for Biomedical Uses; Alarcon, E. I., Ahumada, M., Eds.; Springer International Publishing: Cham, 2019; pp 35–55. [link]

    16. Govan, J.; Abarca, G.; Aliaga, C.; Sanhueza, B.; Orellana, W.; Cárdenas-Jirón, G.; Zagal, J. H.; Tasca, F. Influence of Cyano Substituents on the Electron Density and Catalytic Activity towards the Oxygen Reduction Reaction for Iron Phthalocyanine. The Case for Fe(II) 2,3,9,10,16,17,23,24-Octa(Cyano)Phthalocyanine. Electrochem. commun. 2020, 118, 106784. [link]

    17. Wrighton-Araneda, K.; Valdebenito, C.; Abarca, G.; Cortés-Arriagada, D. Data of Interaction of Supported Ionic Liquids Phases onto Copper Nanoparticles: A Density Functional Theory Study. Data Br. 2020, 33, 106562. [link]

    18. Wrighton-Araneda, K.; Valdebenito, C.; Camarada, M. B.; Abarca, G.; Cortés-Arriagada, D. Interaction of Supported Ionic Liquids Phases onto Copper Nanoparticles: A DFT Study. J. Mol. Liq. 2020, 310, 113089. [link]

    19. Arroyo, J. L.; Povea, P.; Faúndez, R.; Camarada, M. B.; Cerda-Cavieres, C.; Abarca, G.; Manriquez, J. M.; Morales-Verdejo, C. Influence Iron-Iron Distance on the Thermal Decomposition of Ammonium Perchlorate. New Catalysts for the Highly Efficient Combustion of Solid Rocket Propellant. J. Organomet. Chem. 2020, 905, 121020. [link]

    20. Valdebenito, C.; Pinto, J.; Nazarkovsky, M.; Chacón, G.; Martínez-Ferraté, O.; Wrighton-Araneda, K.; Cortés-Arriagada, D.; Camarada, M. B.; Alves Fernandes, J.; Abarca, G. Highly Modulated Supported Triazolium-Based Ionic Liquids: Direct Control of the Electronic Environment on Cu Nanoparticles. Nanoscale Adv. 2020, 2 (3), 1325–1332. [link]

    21. Abarca, G.; Ríos, P. L.; Povea, P.; Cerda-Cavieres, C.; Morales-Verdejo, C.; Arroyo, J. L.; Camarada, M. B. Nanohybrids of Reduced Graphene Oxide and Cobalt Hydroxide (Co(OH)2|rGO) for the Thermal Decomposition of Ammonium Perchlorate. RSC Adv. 2020, 10 (39), 23165–23172. [link]

    22. Abarca, G.; Gonçalves, W. D. G.; Albuquerque, B. L.; Dupont, J.; Prechtl, M. H. G.; Scholten, J. D. Bimetallic RuPd Nanoparticles in Ionic Liquids: Selective Catalysts for the Hydrogenation of Aromatic Compounds. New J. Chem. 2021, 45 (1), 98–103. [link]

Translate »